The bimodal colors of Centaurs and small Kuiper belt objects*,**

N. Peixinho^{1,2}, A. Delsanti^{3,4}, A. Guilbert-Lepoutre⁵, R. Gafeira¹, and P. Lacerda⁶

¹ Center for Geophysics of the University of Coimbra, Av. Dr. Dias da Silva, 3000-134 Coimbra, Portugal e-mail: [peixinho;gafeira]@mat.uc.pt

² Astronomical Observatory of the University of Coimbra, Almas de Freire, 3040-004 Coimbra, Portugal

- ³ Laboratoire d'Astrophysique de Marseille, Université d'Aix-Marseille, CNRS, 38 rue Frédéric Joliot-Curie, 13388 Marseille, France
- e-mail: Audrey.Delsanti@oamp.fr; Audrey.Delsanti@obspm.fr

⁴ Observatoire de Paris, Site de Meudon, 5 place Jules Janssen, 92190 Meudon, France

- ⁵ UCLA, Department of Earth and Space Sciences, 595 Charles E. Young Drive East, Los Angeles CA 90095, USA e-mail: aguilbert@ucla.edu
- ⁶ Queen's University Belfast, Astrophysics Research Centre, Belfast BT7 1NN, UK e-mail: p.lacerda@qub.ac.uk

Received 16 February 2012 / Accepted 14 June 2012

ABSTRACT

Ever since the very first photometric studies of Centaurs and Kuiper belt objects (KBOs) their visible color distribution has been controversial. This controversy has triggered to a prolific debate on the origin of the surface colors of these distant icy objects of the solar system. Two scenarios have been proposed to interpret and explain the large variability of colors, hence surface composition. Are the colors mainly primordial and directly related to the formation region, or are they the result of surface evolution processes? To date, no mechanism has been found that successfully explains why Centaurs, which are escapees from the Kuiper belt, exhibit two distinct color groups, whereas KBOs do not. We readdress this issue using a carefully compiled set of B - R colors and $H_R(\alpha)$ magnitudes (as proxy for size) for 253 objects, including data for 10 new small objects. We find that the bimodal color distribution of Centaurs is a size-related phenomenon, common to both Centaurs and small KBOs, i.e. independent of dynamical classification. Furthermore, we find that large KBOs also have a bimodal distribution of surface colors, albeit distinct from the small objects and strongly dependent on the "Haumea collisional family" objects. When plotted in B - R, $H_R(\alpha)$ space, the colors of Centaurs and KBOs display a peculiar N shape.

Key words. Kuiper belt: general

1. Introduction

Discovered just 20 years ago (Jewitt & Luu 1993), the Kuiper belt holds a vast population of icy bodies orbiting the Sun beyond Neptune. Stored at very low temperatures (\sim 30–50 K), the Kuiper belt objects (KBOs) are expected to be well-preserved fossil remnants of the solar system formation. Presently, \sim 1600 KBOs have been identified and classified into several dynamical families (see Appendix A and Gladman et al. 2008, for a review). Kuiper belt objects, which dynamically evolve to become Jupiter family comets (JFCs), form a transient population, the Centaurs, with short-lived chaotic orbits between Jupiter and Neptune (Kowal et al. 1977; Fernandez 1980; Levison & Duncan 1997).

Between 1998 and 2003, we witnessed a debate on the surface colors of KBOs and Centaurs. One team used very accurate surface colors and found that KBOs were separated into two distinct color groups (Tegler & Romanishin 1998, 2000, 2003). Other teams did not find evidence of any color bimodality

** Table 3 is also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A86 (Barucci et al. 1999; Jewitt & Luu 2001; Hainaut & Delsanti 2002). Careful reanalysis of the data by Peixinho et al. (2003) indicated that only the Centaurs display bimodal colors, i.e. they are distributed into two distinct color groups, one with neutral solar-like colors and the other with very red colors. On the other hand, KBOs exhibit a broad continuous color distribution, from neutral to very red, with no statistical evidence of a color gap between the extrema (Tegler et al. 2008, for a review).

The relevance of this controversy lies in two possible interpretations: i) KBOs and Centaurs are composed of intrinsically different objects, with distinct compositions, which probably formed at different locations in the protosolar disk; ii) KBOs and Centaurs were originally similar but evolutionary processes have altered them differently, hence their color diversity. Most research has focused on the latter hypothesis, offering little improvement to our understanding of the color distributions. Luu & Jewitt (1996) proposed that the competition between a reddening effect of the irradiation of surface ices (Thompson et al. 1987) and a bluing effect due to the collisionally induced resurfacing of fresh non-irradiated ices might generate the observed surface colors. The same authors, however, rejected this model as being the primary cause of the color diversity, owing to the lack of predicted rotational color variations (Jewitt & Luu 2001). On the basis of the same processes, Gil-Hutton (2002) proposed a

^{*} Table 3 and Appendix A are available in electronic form at http://www.aanda.org

more complex treatment of the irradiation process, by assuming an intricate structure of differently irradiated subsurface layers. However, the collisional resurfacing effects became very hard to model, thus making it very hard to provide testable predictions. Later, Thébault & Doressoundiram (2003) showed that the collisional energies involved in different parts of the Kuiper belt did not corroborate the possible link between surface colors and non-disruptive collisions.

Delsanti et al. (2004) refined the first of the aforementioned models by considering the effects of possible cometary activity triggered by collisions, and a size/gravity-dependent resurfacing. Cometary activity can modify the surface properties through the creation of a neutral-color dust mantle. Jewitt (2002) suggested that this process could explain why no JFCs are found with the ultra-red surfaces seen in about half of the Centaurs. It has also been proposed that the sublimation loss of surface ice from a mixture with red materials may be sufficient to make the red material undetectable at visible wavelengths (Grundy 2009). These might explain the Centaur color bimodality, as long as all were red when migrating inwards from the Kuiper belt. Although promising, these models did not provide an explanation of the color bimodality of Centaurs, as they fail to reproduce the bluest colors observed and their frequency.

2. Motivation for this work

We find it puzzling that the objects with both perihelia and semimajor axes between Jupiter and Neptune's orbits, the Centaurs - by definition-, display a different color distribution from physically and chemically similar objects with semi-major axes slightly beyond Neptune's orbit, as in the case of scattered disk objects (SDOs), for instance, or any other KBOs. There is no evident physical consideration that would explain an apparently sudden "transition" in surface color behavior (from bimodal to unimodal) precisely at Neptune's orbital semi-major axis $a_{\rm N}$ = 30.07 AU. This difference between Centaurs and KBOs is particularly puzzling because there is neither a sharp dynamical separation between them (the definition is somewhat arbitrary), nor a clearly identified family of KBOs that could be their origin. Although SDOs are frequently considered as the main source of Centaurs, we note that Neptune Trojans, Plutinos, and classical KBOs have also been found to be viable contributors (Horner & Lykawka 2010; Yu & Tremaine 1999; Volk & Malhotra 2008, respectivelly). Furthermore, Centaurs possess short dynamical lifetimes of $\sim 5 \times 10^5 - 3 \times 10^7$ yr before being injected as JFCs or ejected again into the outer solar system (Horner et al. 2004). If some surface evolution mechanism, dependent on heliocentric distance, is responsible for the bimodal behavior of Centaurs, it must be acting extremely rapidly such that no intermediate colors are ever seen among them. Apart from surface color bimodality, the most distinctive characteristic of Centaurs compared to "other" KBOs is their small size. Known KBOs are mostly larger than Centaurs, simply because they are more distant and thus smaller objects are harder to detect.

In this work, we address the issue of the color distributions of Centaurs and KBOs. We present new data on seven intrinsically faint (thus small) KBOs and three Centaurs, combined with a new compilation of 253 published B - R colors, and available $m_R(1, 1, \alpha)$ magnitudes, or $H_R(\alpha)$, i.e. absolute magnitudes that have not been corrected for phase effects, and some identified spectral features. We study this large sample of colors (including objects from all dynamical families) versus absolute magnitude as a proxy for size, with the implicit assumption that surface colors are independent of dynamical classification. We present

Table 1. Filters specifications.

	8.2 m S	Subaru	UH 2	UH 2.2 m		
Filter	Waveler	Wavelength (Å)		ngth (Å)		
	Center	Width	Center	Width		
В	4400	1080	4480	1077		
R	6600	1170	6460	1245		

the most relevant results, namely those found in B - R vs. $H_R(\alpha)$ space.

3. Observations and data reduction

Observations of 7 KBOs and 1 Centaur were taken at the 8.2 m Subaru telescope, on 2008–07–02, using 0''206/pix FOCAS camera in imaging mode with 2 × 2 binning (2 CCDs of 2048 × 4096 pixels, Kashikawa et al. 2002). Weather was clear with seeing ~0.7''. We used the University of Hawaii UH 2.2 m telescope, to observe 2 Centaurs on 2008–09–29, with the 0''22/pixel Tektronix 2048 × 2048 pixels CCD camera. Weather was clear with seeing ~0.9''. Both telescopes are on Mauna Kea, Hawaii, USA. Images from both instruments were processed using IRAF's CCDRED package following the standard techniques of median bias subtraction and median flat-fielding normalization.

Standard calibration was made observing Landolt standard stars (Landolt 1992) at different airmasses for each filter, obtaining the corresponding zeropoints, solving by non-linear leastsquare fits the transformation equations, directly in order of Rand (B-R), using IRAF's PHOTCAL package. The characteristics of the filters used on each telescope were essentially equivalent (Table 1). Subaru's data was calibrated using the Landolt standard stars 107-612, PG1047+003B, 110-230, Mark A2, and 113-337, which were observed repeatedly at different airmasses. The data acquired at the UH2.2 m were calibrated, analogously, using the stars 92-410, 92-412, 94-401, 94-394, PG2213-006A, and PG2213-006B. These stars have high photometric accuracy and colors close to those of the Sun. We used the typical extinction values for Mauna Kea of $k_B = 0.19$ and $k_R = 0.09$ (Krisciunas et al. 1987, and CFHT Info Bulletin #19). All fits had residuals rms < 0.02, which were added quadratically to the photometric error in each measurement. Targets were observed twice in B band and twice in R band, to avoid objects trailing in one long exposure. Each of the two B or R exposures were coadded centered on the object, and also co-added centered on the background stars. The former were used to measure the object, the latter to compute the growth-curve correction. The time and airmass of observation were computed for the center of the total exposure time. We applied growth-curve correction techniques to measure the target's magnitudes using IRAF's MKAPFILE task (for details, see Peixinho et al. 2004). A description of the observation and results are shown in Table 2.

4. Compilation of data

We compiled the visible colors of 290 objects (KBOs, Centaurs, and Neptune Trojans) for which the absolute magnitude in either *R* or *V* band was accessible (e.g. with individual magnitudes *and* observing date available), and surface spectra information for 48 objects, as published in the literature to date (Feb. 2012). We computed the absolute magnitude $H_R(\alpha) \equiv m_R(1, 1, \alpha) = R - 5 \log (r \cdot \Delta)$, where *R* is the *R*-band magnitude, and *r* and Δ

Table 2. Observational circumstances and photometric results of this work's data.

0	bject	Dyn. class*	Telescope	UT date	r[AU]	$\Delta[AU]$	$\alpha[^{\circ}]$	R	B-R	$H_R(\alpha)$
(130391)	2000 JG ₈₁	2:1	Subaru	20080702UT07:24:58	34.073	34.817	1.2	23.12 ± 0.03	1.42 ± 0.06	7.75 ± 0.06
(136120)	2003 LG ₇	3:1	Subaru	20080702UT09:42:53	32.815	33.659	1.0	23.54 ± 0.05	1.27 ± 0.09	8.32 ± 0.05
(149560)	2003 QZ ₉₁	SDO	Subaru	20080702UT13:08:33	25.849	26.509	1.7	22.48 ± 0.03	1.30 ± 0.05	8.30 ± 0.03
	2006 RJ ₁₀₃	Nep. Trojan	Subaru	20080702UT14:07:50	30.760	30.534	1.9	22.27 ± 0.02	1.90 ± 0.04	7.40 ± 0.02
	2006 SQ ₃₇₂	SDO	Subaru	20080702UT11:45:34	23.650	24.287	1.9	21.55 ± 0.02	1.78 ± 0.03	7.71 ± 0.05
	2007 JK ₄₃	SDO	Subaru	20080702UT08:08:13	23.113	23.766	1.9	20.73 ± 0.02	1.40 ± 0.03	7.03 ± 0.02
	2007 NC7	SDO	Subaru	20080702UT11:30:49	20.090	20.916	1.7	21.19 ± 0.02	1.28 ± 0.03	8.07 ± 0.02
(281371)	2008 FC ₇₆	Cent	Subaru	20080702UT11:13:05	11.119	11.793	3.8	19.79 ± 0.02	1.76 ± 0.02	9.18 ± 0.04
	2007 RH ₂₈₃	Cent	UH2.2 m	20080929UT12:43:47	17.081	17.956	1.6	20.85 ± 0.03	1.20 ± 0.05	
	2007 RH ₂₈₃	Cent	UH2.2 m	20080929UT12:57:51	17.081	17.956	1.6	20.90 ± 0.03	1.28 ± 0.06	
	mean								1.24 ± 0.07	8.44 ± 0.04
	2007 UM ₁₂₆	Cent	UH2.2 m	20080929UT08:56:52	10.191	11.177	0.9	20.43 ± 0.03	1.21 ± 0.05	
	2007 UM ₁₂₆	Cent	UH2.2 m	20080929UT09:06:41	10.191	11.177	0.9	20.53 ± 0.03	0.92 ± 0.04	
	2007 UM ₁₂₆	Cent	UH2.2 m	20080929UT09:16:17	10.191	11.177	0.9	20.38 ± 0.02	1.12 ± 0.04	
	mean								1.08 ± 0.10	10.16 ± 0.04

Notes. ^(*) Dynamical classes are: Centaur, scattered disk object (SDO), Neptune Trojan (object located in 1:1 mean motion resonance with Neptune), 2:1, and 3:1 (objects located in 2:1 or 3:1 mean motion resonance with Neptune, respectively). For details of our classification, see Appendix A.

are the helio- and geocentric distances in AU, respectively. In this compilation, 253 objects have B - R colors available, which are the focus of this paper (see Table 3), and 48 also have spectral information. The description of the compilation method is presented in Appendix A. Sun-Object-Earth phase angles α are, typically, smaller than 1.5° for KBOs and less than 4° for Centaurs. Measurements of magnitude dependences on the phase angle for these objects, i.e. phase coefficients $\beta[mag/°]$, are scarce but, so far, do not show any evidence of extreme variability, showing instead an average value of $\beta = 0.11 \pm 0.05$ (Belskaya et al. 2008). Looking at the linear approximation $H_R(\alpha = 0°) \approx H_R(\alpha) - \alpha\beta$, we can see that by not correcting the absolute magnitude for phase effects we slightly overestimate it. We deal with this issue in Sect. 5.

Recent works have shown that there is no strong correlation between object diameter *D* and geometric albedo p_V , nor between geometric albedo p_V and absolute magnitude H_R (Stansberry et al. 2008; Santos-Sanz et al. 2012; Vilenius et al. 2012; Mommert et al. 2012). However, on the basis of the 74 diameter and albedo measurements of Centaurs and KBOs made using *Herschel* and/or *Spitzer* telescopes, published in the aforementioned works, we verified that H_R and *D* correlate very strongly with a Spearman-rank correlation of $\rho = -0.92^{+0.03}_{-0.02}$, with a significance level $SL \ll 0.01\%$ (error bars computed using bootstraps, for details see Doressoundiram et al. 2007). Consequently, absolute magnitude is a very good proxy of size.

5. An *N*-shaped doubly bimodal structure

In Fig. 1, we plot the *R*-band absolute magnitude $H_R(\alpha)$ (proxy of an object's size) against B-R color for all (n = 253) objects in our database. The cloud of points forms a recognizable N shape with an apparent double bimodal structure in color. The smaller objects (upper part of the plot) show a bimodal B-R distribution. Although apparently dominated by Centaurs, this bimodal distribution also includes KBOs of similar $H_R(\alpha)$, which suggests that the bimodal structure in B - R color is a property of the smaller objects in general, regardless of their dynamical family. This bimodality appears to disappear for objects with $H_R(\alpha) \leq 7$, where the B - R color distribution seems unimodal. Most interestingly, we note that towards the larger objects (lower part of the plot) the colors appear to follow another bimodal distribution, with

Fig. 1. B - R vs. $H_R(\alpha)$ plot of all 253 objects. KBOs are represented by solid circles and Centaurs by white dotted solid circles. Objects with $H_R(\alpha) \ge 6.8$ separate into two color groups with a "gap" centered at $B - R \sim 1.60$. Objects with $H_R(\alpha) \le 5.0$ also show statistical evidence of a separation into two-color groups but with a "gap" centered at $B - R \sim 1.25$. Objects spectra with known features of water ice, methane, methanol, and featureless spectra, are coded using colors as described in the legend. There is no obvious/clear connection between B - R colors and the presence of spectral features.

the gap between the two groups shifted towards the blue with respect to the "small" object bimodality. This new "large" object bimodality is explicitly reported for the first time.

When performing hypothesis testing, one should adopt a critical value of significance α . The value α is the maximum probability (risk) we are willing to take in rejecting the null hypothesis H_0 (i.e. to claim no evidence of bimodality) when it

is actually true (i.e. data is truly bimodal/multimodal) which is also called type I error probability. This value is often a source of debate, as are the theories of hypothesis testing themselves (e.g. Lehmann 1993). The decision relies mostly upon whether the effects of a right or wrong decision are of either practical importance or consequence. The paradigm is that by diminishing the probability of wrongly rejecting a null hypothesis (e.g. deciding that bimodality is found when bimodality is not present in the parent population), we increase the probability of wrongly accepting the null hypothesis (i.e. deciding on unimodality when bimodality is in fact present), also called type II error probability, or risk factor β . Some authors and/or research fields consider that there is only sufficient evidence against H_0 when the achieved significance level is SL < 0.3%, i.e. using $\alpha = 0.3\%$ (the 3σ Gaussian probability), whereas others require even $\alpha = 0.0003\%$ (6 σ). This might be a criterion for rejecting H_0 but is not a very useful "rating" of the evidence against H_0 , which is what we are implicitly doing. We rate the evidence against H_0 following a common procedure in statistics: we assume that SL < 5% implies that there is reasonably strong evidence against H_0 , SL < 2.5% that there is strong evidence against H_0 , and SL < 1% that there is very strong evidence against H_0 (e.g. Efron & Tibshirani 1993). We also add the common procedure in physics that SL < 0.3% represents clear evidence against H_0 . Furthermore, for better readability, we employ throughout this work the term "evidence for bimodality" instead of the statistically correct term "evidence against unimodality".

Using the R software's (version 2.14.1; R Development Core Team 2011) Dip Test package (Hartigan 1985; Hartigan & Hartigan 1985; Maechler 2011), we test the null hypothesis H_0 that "the sample is consistent with an unimodal parent distribution" over all objects in the B - R vs. $H_R(\alpha)$ space, against the alternative hypothesis H_1 that "the sample is inconsistent with an unimodal parent distribution" (hence it is either bimodal or multimodal). The full sample, in spite of the apparent two spikes, shows no strong evidence against color unimodality neither with (n = 253, SL = 17%) nor without (n = 224, SL = 17%)SL = 41%) Centaurs (see Fig. 2a). The Centaur population (n = 29) shows strong evidence against unimodality at 1.6%. Removing the 3 brightest Centaurs (with $H_R(\alpha) \ge 6.6$) improves this significance to 0.3%. To refine the analysis and test different ranges in $H_R(\alpha)$, we applied the Dip Test to sub-samples using a running cutoff in $H_R(\alpha)$ that was shifted by 0.1 mag between consecutive tests.

Bimodal distribution of "small" objects: we performed iterative Dip Tests with a $H_{R:cut}$ starting at the maximum $H_R(\alpha)$ value, and decreasing in steps of 0.1 mag; in each iteration, we applied the test to those objects above the cutoff line (i.e. with $H_R(\alpha) \ge H_{R:cut}$). We stopped shifting $H_{R:cut}$ when we detected the maximum of evidence against unimodality (i.e. a minimum of significance level), henceforth accepted the alternate hypothesis that "the distribution is bimodal/multimodal") Evidence of bimodality at significance levels better than 5% start to be seen for objects with $H_R(\alpha) \ge 7.1$. This evidence peaks at a significance of 0.1% for the 124 faint objects with $H_R(\alpha) \ge 6.8$.

We propose that the visible surface color distribution of (non-active) icy bodies of the outer solar system depends only on object size, and is independent of their dynamical classification. No mechanism has yet been found to explain the color bimodality only for Centaurs. However, since this mechanism might exist, even if it has not yet been found, we re-analyze the sample removing the Centaurs. Naturally, the sampling of the smaller

Fig. 2. Histograms of B - R colors from selected $H_R(\alpha)$ ranges: **a**) all the 253 objects. Taken globally do not exhibit statistical evidence for bimodality, which was known to exist among Centaurs. **b**) The 124 "small" objects, with $H_R(\alpha) \ge 6.8$. Evidence for bimodal behavior is clear and still present when removing Centaurs. **c**) The 38 "large" objects, with $H_R(\alpha) \le 5.0$. A bimodal behavior is shown but it loses the statistical significance without the "Haumea collisional family" objects. **d**) The 91 "intermediate" size objects, $6.8 > H_R(\alpha) > 5.0$. Regardless of the apparent small gap at $B - R \sim 1.3$ there is no statistical evidence for two separate groups.

objects diminishes considerably, hence reducing the statistical significance against the null hypothesis (i.e. increases the probability of observing two groups on a purely random distribution of colors). Nonetheless, the 98 remaining objects with $H_R(\alpha) \ge 6.8$ show evidence of bimodality at a significance level of 3.5%, reaching a significance minimum of 1.8% for the 165 objects with $H_R(\alpha) \ge 5.8$. In both cases, the "gap" is centered around $B - R \sim 1.60$ (see Figs. 1 and 2b).

Bimodal distribution of "large" objects: we test the brightest part of the sample using a cutoff limit starting at the minimum $H_R(\alpha)$ value; we consider objects below the cutoff (i.e. brighter than $H_{R: \text{cut}}$) and shift it up in steps of 0.1 mag. We find very strong evidence against unimodality for objects with $H_R(\alpha) \leq$ 5.0 (SL = 0.9%). Data still shows reasonably strong evidence against unimodality for objects up to $H_R(\alpha) \leq 5.6$. The "gap" is located at $B - R \sim 1.25$. There are no Centaurs in this brightness range. Explicitly, evidence of "large" object bimodality has not been previously reported (see Figs. 1 and 2c). Removing from the sample the 7 objects belonging to the "Haumea collisional family" (Brown et al. 2007b; Snodgrass et al. 2010), which are all clustered on the lower left "leg" of the N shape, erases the statistical evidence against the null hypothesis, even if still suggestive to the eye. Therefore, with the present data sample, the "evidence of bimodality" among bright KBOs cannot be stated to be independent of the peculiar properties of the Haumea collisional family.

The "intermediate" size continuum: the 91 objects with $6.8 > H_R(\alpha) > 5.0$, which include 3 Centaurs, do not show evidence against a unimodal behavior (SL = 98.0%), even if a small gap seems suggestive to the eye (see Figs. 1 and 2d). However, statistically, their inclusion in the fainter group does not decrease the significance below the "strong evidence against unimodality", i.e. SL = 2.5% (see Figs. 1 and 2d). On the other hand, if added to the "large" objects the statistical evidence for the bimodality of "large" objects does not hold.

To check for the effects of not correcting $H_R(\alpha)$ for phaseangle effects we performed Monte Carlo simulations. First, we computed all the possible α values and their probability distribution for an "average" Centaur with a semi-major axis a = 15AU. The maximum α is 3.8° and the median value is 3.2°. Analogously, we did the same for a KBO with a = 40 AU. The maximum α is 1.4° and the median value is 1.2°. Therefore, on average, our absolute magnitudes might be *overestimated* by $\Delta H_R \approx 0.35$ for Centaurs and by $\Delta H_R \approx 0.13$ for KBOs. Simulating 1000 "phase-corrected" H_R data-samples, we found that following the probability distribution of the corresponding α angles did not alter any of the results obtained using simply $H_R(\alpha)$.

6. Interpretation

Our analysis shows that the B - R colors of Centaurs and KBOs when plotted as a function of $H_R(\alpha)$ display an *N*-shaped, double, bimodal behavior. The color distribution seems to depend on object size (intrinsic brightness) instead of dynamical family. Using the brightness-size-albedo relation $D_{\rm km} = 2\sqrt{2.24 \times 10^{16} \times 10^{0.4}(H_{R\odot}-H_R)}/p_R}$, with solar $H_{R\odot} = -27.10$, the main issue is to choose a canonical geometric albedo value p_R . Recent works (Stansberry et al. 2008; Santos-Sanz et al. 2012; Vilenius et al. 2012; Mommert et al. 2012) measured a wide range of albedo values, for each dynamical family, in some cases far from the 0.04 value previously assumed based on comet studies. As we needed only a rough estimate of the size ranges, we selected the average value of $p_R = 0.09$. Using this parameter, objects with diameters $165 \leq D_{\rm km} \leq 380$ follow a rather continuous range of B - R colors.

Visible and near-infrared (NIR) spectroscopy for about 75 bright objects (Barucci et al. 2011, for a review) also indicates that the surface compositions of KBOs and Centaurs is very diverse. The largest objects are coated in methane ice, while intermediate-size objects display water-ice features, sometimes with traces of other volatiles. Small KBOs generally have featureless spectra. The presence of volatiles on the surface of an object may be related to its ability to retain them, i.e. to its size and temperature (Schaller & Brown 2007). It should also depend on the subsequent irradiation history (Brown et al. 2011). However, no correlation can be made to date between visible colors and NIR spectral properties. For example, two objects of comparable size, Quaoar and Orcus, both exhibit water icedominated surfaces but have, respectively, very red and neutral visible colors (Delsanti et al. 2010).

Objects smaller than $\sim 100-150$ km, including most of the known Centaurs, are believed to be fragments from the collision of larger objects (Pan & Sari 2005). Predicting the properties of these fragments is a complex task, but the field shows promising advances (for a review, see Leinhardt et al. 2008). An immediate hypothesis is that red and neutral objects are the only possible outcomes of a disruptive collision. Thermal evolution

modeling suggests that KBOs, especially large ones, should have a layered structure, including some liquid water leading to a complete differentiation of the object (Merk & Prialnik 2006; Guilbert-Lepoutre et al. 2011). A catastrophic collision could result in the formation of fragments with very different properties, depending on whether they come from the core of the parent body, or its mantle, or some subsurface layers. However, our current knowledge of KBO internal properties and evolution is still incipient to support or discard such hypothesis. In addition, it is hard to understand why objects with $B - R \sim 1.6$ (in the gap of the small object's bimodal distribution) should not exist. Maybe their relative number is so small compared to the neutral and red groups that it is extremely difficult to observe them, leading to other puzzling questions. Research on these aspects should be encouraged. In particular, the detection and measurement of many more small objects - KBOs and Centaurs - could help us to further constrain their color distribution and other properties. The objects in the "intermediate" $H_R(\alpha)$ range $(6.8 > H_R(\alpha) > 5.0)$ seem unimodally distributed in B - R color; they might represent a transition phase between the two bimodal distributions. These medium-sized objects are probably too large to be remnants from disruptive collisions, and too small to have recently undergone cryovolcanic activity (their properties may not even have differentiated). They might, actually, represent the only group where the outcomes of the combined effects of different birthplaces, space weathering, and thermal processing can be studied or analyzed.

The evidence of a bimodal distribution among the largest objects is also puzzling. These have been supposedly the most well-studied objects, yet the evidence for a bimodal distribution of their surface colors has never been reported. Nonetheless, removing the 7 Haumea collisional family objects from our sample we no longer find evidence against an unimodal distribution, even if it is apparent to the eye. This issue should be further analyzed in great detail when a larger sample is available.

In this work, we confirm that there is no noticeable link between the surface composition of an object and its visible colors. Objects hosting water ice are evenly distributed both among large and small objects, and among red and blue ones. When it comes to volatiles such as methane (CH₄) or methanol (CH₃OH), we have found that they are also distributed among all groups, although they might be more difficult to detect for small/fainter objects. We nonetheless find a cluster of featureless objects among the red group of large objects: these might represent the most irradiated/oldest surfaces in the overall population. Therefore, it seems that a simple explanation such as the model of atmospheric escape proposed by Schaller & Brown (2007) might not be sufficient to explain the colors and compositions of KBOs. The reason why they evolved into two different color groups can be very complex, and should involve different thermal, collisional, irradiation histories, in addition to possibly different birthplaces.

7. Summary

We have analyzed the B - R color distribution as a function of $H_R(\alpha)$ magnitude for 253 Centaurs and KBOs, including 10 new measurements, and with the information on their NIR spectral features. Using the known diameters, D, and albedos, p_V , of 74 of these objects we verify that H_R and D correlate very strongly ($\rho = -0.92^{+0.03}_{-0.02}$, $SL \ll 0.01\%$), validating H_R as a good proxy of size. Furthermore, through simulations, we show that not correcting $H_R(\alpha)$ to $H_R(\alpha = 0^\circ)$ does not change any of the global results. Our analysis shows that:

- 1. The B R vs. $H_R(\alpha)$ color distribution is N-shaped, indicating that B - R colors are probably dominated by a size effect independent from dynamical classification.
- 2. Small objects, including both KBOs and Centaurs, display a bimodal structure of B - R colors at a 0.1% significance level (i.e. objects with $H_R(\alpha) \ge 6.8$, or $D_{\rm km} \le 165$, assuming that $p_R = 0.09$ with the "gap" centered at $B - R \sim 1.60$. Removing Centaurs from the sample greatly reduces the sampling of small objects, reducing also the significance of the result to 3.8%.
- 3. Large objects also appear to have a bimodal color distribution, with a minimum significance of 0.9%, for $H_R(\alpha) \leq$ 5.0 ($D_{\rm km} \gtrsim 380$, assuming that $p_R = 0.09$), and a color "gap" centered at $B - R \sim 1.25$. Reasonable evidence of this bimodality starts when considering only objects with $H_R(\alpha) \leq 5.6 \ (D_{\rm km} \gtrsim 290)$, dropping below the critical 5% when reaching $H_R(\alpha) \leq 4.4$ ($D_{\rm km} \gtrsim 500$). However, this behavior seems dominated by the presence of 7 Haumea collisional family objects, which "cluster" at the lower left edge of the N-shape. Once removed, there is no statistical evidence against compatibility with a random unimodal distribution for the larger KBOs.
- 4. Intermediate-size objects do not show incompatibility with a continuum of B - R colors (i.e. $6.8 > H_R(\alpha) > 5.0$, or $165 \leq D_{\rm km} \leq 380$, assuming $p_R = 0.09$). These objects seem too large to be the remnants of disruptive collisions and too small to display cryovolcanic activity. They might be the best targets for study of the combined effects of different birthplaces, different space weathering, and different thermal processing. Further studies are encouraged.
- 5. Inspecting the NIR spectral properties against B R colors shows that there is no obvious link between the colors and the chemical compositions of the objects' surfaces.

Acknowledgements. The authors thank Rachel Stevenson, Megan Bagley, and Takashi Hatori for assisting with the observations at Subaru telescope. N.P. was partially supported by NASA's Origins grant to D. Jewitt, by the European Social Fund, by the Portuguese Foundation for Science and Technology (FCT, ref.: BPD/18729/2004), and by the transnational cooperation agreement FCT-Portugal/CNRS-France (ref.: 441.00). A.G.L. was supported by a NASA Herschel grant to D. Jewitt. P.L. is grateful for financial support from a Michael West Fellowship and from the Royal Society in the form of a Newton Fellowship.

References

- Barkume, K. M., Brown, M. E., & Schaller, E. L. 2008, AJ, 135, 55
- Barucci, M. A., Doressoundiram, A., Tholen, D., Fulchignoni, M., & Lazzarin, M 1999 Icarus 142 476
- Barucci, M. A., Romon, J., Doressoundiram, A., & Tholen, D. J. 2000, AJ, 120, 496
- Barucci, M. A., Morea Dalle Ore, C., Alvarez-Candal, A., et al. 2010, AJ, 140, 2095
- Barucci, M., Alvarez-Candal, A., Merlin, F., et al. 2011, Icarus, 214, 297
- Belskaya, I. N., Levasseur-Regourd, A.-C., Shkuratov, Y. G., & Muinonen, K. 2008, Surface Properties of Kuiper Belt Objects and Centaurs from Photometry and Polarimetry, eds. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, & R. Dotson, 115
- Boehnhardt, H., Tozzi, G. P., Birkle, K., et al. 2001, A&A, 378, 653
- Boehnhardt, H., Delsanti, A., Barucci, A., et al. 2002, A&A, 395, 297
- Brown, R. H., Cruikshank, D. P., & Pendleton, Y. 1999, ApJ, 519, L101
- Brown, M. E., Barkume, K. M., Blake, G. A., et al. 2007a, AJ, 133, 284
- Brown, M. E., Barkume, K. M., Ragozzine, D., & Schaller, E. L. 2007b, Nature, 446.294
- Brown, M. E., Schaller, E. L., & Fraser, W. C. 2011, ApJ, 739, L60

- Cruikshank, D. P., Roush, T. L., Bartholomew, M. J., et al. 1998, Icarus, 135, 389
- Delsanti, A. C., Boehnhardt, H., Barrera, L., et al. 2001, A&A, 380, 347
- Delsanti, A., Hainaut, O., Jourdeuil, E., et al. 2004, A&A, 417, 1145
- Delsanti, A., Merlin, F., Guilbert-Lepoutre, A., et al. 2010, A&A, 520, A40
- DeMeo, F. E., Barucci, M. A., Merlin, F., et al. 2010, A&A, 521, A35
- Doressoundiram, A., Barucci, M. A., Romon, J., & Veillet, C. 2001, Icarus, 154, 277
- Doressoundiram, A., Peixinho, N., de Bergh, C., et al. 2002, AJ, 124, 2279
- Doressoundiram, A., Barucci, M. A., Tozzi, G. P., et al. 2005a, Planet. Space Sci., 53, 1501
- Doressoundiram, A., Peixinho, N., Doucet, C., et al. 2005b, Icarus, 174, 90
- Doressoundiram, A., Peixinho, N., Moullet, A., et al. 2007, AJ, 134, 2186
- Dotto, E., Barucci, M. A., Boehnhardt, H., et al. 2003, Icarus, 162, 408
- Efron, B., & Tibshirani, R. J. 1993, An Introduction to the Bootstrap (Chapman & Hall/CRC)
- Fernandez, J. A. 1980, MNRAS, 192, 481
- Ferrin, I., Rabinowitz, D., Schaefer, B., et al. 2001, ApJ, 548, L243
- Fornasier, S., Doressoundiram, A., Tozzi, G. P., et al. 2004, A&A, 421, 353
- Gil-Hutton, R. 2002, Planet. Space Sci., 50, 57
- Gladman, B., Marsden, B. G., & Vanlaerhoven, C. 2008, Nomenclature in the Outer Solar System, eds. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, & R. Dotson, 43
- Green, S. F., McBride, N., O'Ceallaigh, D. P., et al. 1997, MNRAS, 290, 186 Grundy, W. M. 2009, Icarus, 199, 560
- Grundy, W. M., Buie, M. W., & Spencer, J. R. 2005, AJ, 130, 1299
- Guilbert, A., Alvarez-Candal, A., Merlin, F., et al. 2009a, Icarus, 201, 272
- Guilbert, A., Barucci, M. A., Brunetto, R., et al. 2009b, A&A, 501, 777
- Guilbert-Lepoutre, A., Lasue, J., Federico, C., et al. 2011, A&A, 529, A71
- Gulbis, A. A. S., Elliot, J. L., & Kane, J. F. 2006, Icarus, 183, 168 Hainaut, O. R., & Delsanti, A. C. 2002, A&A, 389, 641
- Hainaut, O. R., Delahodde, C. E., Boehnhardt, H., et al. 2000, A&A, 356, 1076
- Hartigan, P. M. 1985, Appl. Stat., 34, 320
- Hartigan, J. A., & Hartigan, P. M. 1985, Ann. Stat., 13, 70
- Horner, J., & Lykawka, P. S. 2010, MNRAS, 402, 13
- Horner, J., Evans, N. W., & Bailey, M. E. 2004, MNRAS, 354, 798
- Jewitt, D. C. 2002, AJ, 123, 1039
- Jewitt, D., & Luu, J. 1993, Nature, 362, 730
- Jewitt, D., & Luu, J. 1998, AJ, 115, 1667
- Jewitt, D. C., & Luu, J. X. 2001, AJ, 122, 2099
- Kashikawa, N., Aoki, K., Asai, R., et al. 2002, PASJ, 54, 819
- Kern, S. D., McCarthy, D. W., Buie, M. W., et al. 2000, ApJ, 542, L155
- Kowal, C. T., Liller, W., & Chaisson, L. J. 1977, IAU Circ., 3147, 1
- Krisciunas, K., Sinton, W., Tholen, K., et al. 1987, PASP, 99, 887
- Lacerda, P., Jewitt, D., & Peixinho, N. 2008, AJ, 135, 1749
- Landolt, A. U. 1992, AJ, 104, 340
- Lazzaro, D., Florczak, M. A., Angeli, C. A., et al. 1997, Planet. Space Sci., 45, 1607
- Lehmann, E. L. 1993, J. Am. Stat. Assoc., 88, 1242
- Leinhardt, Z. M., Stewart, S. T., & Schultz, P. H. 2008, Physical Effects of Collisions in the Kuiper Belt, eds. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A., Morbidelli, & R. Dotson, 195
- Levison, H. F., & Duncan, M. J. 1997, Icarus, 127, 13
- Luu, J., & Jewitt, D. 1996, AJ, 112, 2310
- Lykawka, P. S., & Mukai, T. 2007, Icarus, 189, 213
- Maechler, M. 2011, Diptest: Hartigan's dip test statistic for unimodality corrected code, r package version 0.75-1
- Merk, R., & Prialnik, D. 2006, Icarus, 183, 283
- Merlin, F., Alvarez-Candal, A., Delsanti, A., et al. 2009, AJ, 137, 315
- Mommert, M., Harris, A. W., Kiss, C., et al. 2012, A&A, 541, A93 Pan, M., & Sari, R. 2005, Icarus, 173, 342
- Peixinho, N., Lacerda, P., Ortiz, J. L., et al. 2001, A&A, 371, 753
- Peixinho, N., Doressoundiram, A., Delsanti, A., et al. 2003, A&A, 410, L29
- Peixinho, N., Boehnhardt, H., Belskaya, I., et al. 2004, Icarus, 170, 153
- Pinilla-Alonso, N., Brunetto, R., Licandro, J., et al. 2009, A&A, 496, 547
- R Development Core Team 2011, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria
- Rabinowitz, D. L., Barkume, K., Brown, M. E., et al. 2006, ApJ, 639, 1238
- Rabinowitz, D. L., Schaefer, B. E., & Tourtellotte, S. W. 2007, AJ, 133, 26
- Rabinowitz, D. L., Schaefer, B. E., Schaefer, M., & Tourtellotte, S. W. 2008, AJ, 136 1502
- Romanishin, W., Tegler, S. C., Levine, J., & Butler, N. 1997, AJ, 113, 1893
- Romanishin, W., Tegler, S. C., & Consolmagno, G. J. 2010, AJ, 140, 29
- Romon-Martin, J., Barucci, M. A., de Bergh, C., et al. 2002, Icarus, 160, 59
- Romon-Martin, J., Delahodde, C., Barucci, M. A., de Bergh, C., & Peixinho, N.
- 2003. A&A. 400. 369 Santos-Sanz, P., Ortiz, J. L., Barrera, L., & Boehnhardt, H. 2009, A&A, 494, 693
- Santos-Sanz, P., Lellouch, E., Fornasier, S., et al. 2012, A&A, 541, A92

N. Peixinho et al.: The bimodal colors of Centaurs and small Kuiper belt objects

- Schaller, E. L., & Brown, M. E. 2007, ApJ, 659, L61
- Schaller, E. L., & Brown, M. E. 2008, ApJ, 684, L107
- Sheppard, S. S. 2010, AJ, 139, 1394
- Sheppard, S. S., & Trujillo, C. A. 2006, Science, 313, 511
- Snodgrass, C., Carry, B., Dumas, C., & Hainaut, O. 2010, A&A, 511, A72
- Stansberry, J., Grundy, W., Brown, M., et al. 2008, Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope, eds. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, & R. Dotson, 161
- Tegler, S. C., & Romanishin, W. 1997, Icarus, 126, 212
- Tegler, S. C., & Romanishin, W. 1998, Nature, 392, 49
- Tegler, S. C., & Romanishin, W. 2000, Nature, 407, 979

- Tegler, S. C., & Romanishin, W. 2003, Icarus, 161, 181
- Tegler, S. C., Romanishin, W., & Consolmagno, G. J. 2003, ApJ, 599, L49
- Tegler, S. C., Bauer, J. M., Romanishin, W., & Peixinho, N. 2008, Colors of Centaurs, eds. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, & R. Dotson, 105
- Thébault, P., & Doressoundiram, A. 2003, Icarus, 162, 27
- Thompson, W. R., Murray, B. G. J. P. T., Khare, B. N., & Sagan, C. 1987, J. Geophys. Res., 92, 14933
- Trujillo, C. A., & Brown, M. E. 2002, ApJ, 566, L125
- Vilenius, E., Kiss, C., Mommert, M., et al. 2012, A&A, 541, A94
- Volk, K., & Malhotra, R. 2008, ApJ, 687, 714
- Yu, Q., & Tremaine, S. 1999, ApJ, 118, 1873

Pages 8 to 12 are available in the electronic edition of the journal at http://www.aanda.org

A&A 546, A86 (2012)

Table 3.	Compilation o	of absolute magnitud	le $H_R(\alpha)$, $B - R$	colors, and s	pectral features	used in this work
----------	---------------	----------------------	----------------------------	---------------	------------------	-------------------

Object	Dynamical class	$H_R(\alpha)$	B-R	Spectral features	References
(2060) Chiron	Centaur	6.287 ± 0.022	1.010 ± 0.044	Water ice	1, 2, 3, a
(5145) Pholus	Centaur	7.198 ± 0.056	1.970 ± 0.108	Methanol	4, b
(7066) Nessus	Centaur	9.020 ± 0.068	1.847 ± 0.165		1
(8405) Asbolus	Centaur	9.257 ± 0.120	1.228 ± 0.057	Water ice	4, 5, c
(10199) Chariklo	Centaur	6.569 ± 0.015	1.299 ± 0.065	Water ice	6, 7, d
(10370) Hylonome	Centaur	9.250 ± 0.131	1.153 ± 0.081		1, 6, 8
(15760) 1992 QB ₁	Cold classical	6.867 ± 0.121	1.670 ± 0.145		1, 7, 9
(15788) 1993 SB	Plutino	8.032 ± 0.122	1.276 ± 0.100		7, 9, 10
(15789) 1993 SC	Plutino	6.722 ± 0.074	1.720 ± 0.140	Methane	1, 7, 11, 12, e
(15810) 1994 JR ₁	Plutino	6.867 ± 0.077	1.610 ± 0.216		13
(15820) 1994 TB	Plutino	7.527 ± 0.091	1.759 ± 0.155		1, 7, 10, 11, 13
(15874) 1996 TL ₆₆	Scattered disk object	5.131 ± 0.144	1.113 ± 0.070		6, 7, 12, 13, 14
(15875) 1996 TP ₆₆	Plutino	6.953 ± 0.071	1.678 ± 0.123		6, 7, 12, 13, 14, 15
(15883) 1997 CR ₂₉	Scattered disk object	7.076 ± 0.135	1.260 ± 0.128		7, 16
(16684) 1994 JQ ₁	Cold classical	6.618 ± 0.117	1.738 ± 0.120		17, 18, 19
(19255) 1994 VK ₈	Cold classical	7.016 ± 0.163	1.680 ± 0.067		9
(19299) 1996 SZ ₄	Plutino	8.184 ± 0.159	1.299 ± 0.102		7, 9, 18
(19308) 1996 TO ₆₆	Resonant (19:11)	4.530 ± 0.044	1.056 ± 0.210	Water ice	6, 7, 12, 13, 14, 20, 21, f
(19521) Chaos	Hot classical	4.442 ± 0.069	1.558 ± 0.062		8, 9, 10, 22
(20000) Varuna	Hot classical	3.345 ± 0.059	1.530 ± 0.036	Water ice	8, g
(20108) 1995 QZ ₉	Plutino	7.889 ± 0.399	1.400 ± 0.050		9, This work
(24835) 1995 SM ₅₅	Hot classical	4.352 ± 0.040	1.018 ± 0.052	Water ice	8, 10, 14, 23, g
(24952) 1997 QJ ₄	Plutino	7.389 ± 0.114	1.104 ± 0.104		7, 18
(24978) 1998 HJ ₁₅₁	Cold classical	7.008 ± 0.050	1.820 ± 0.042		19
(26181) 1996 GQ ₂₁	Resonant (11:2)	4.467 ± 0.090	1.693 ± 0.079	Methanol	18, 24, g
(26308) 1998 SM ₁₆₅	Resonant (2:1)	5.757 ± 0.119	1.620 ± 0.105	F (1	9, 10, 15
(26375) 1999 DE ₉	Resonant (5:2)	4.810 ± 0.046	1.536 ± 0.056	Featureless	7, 8, 25, h
(28978) IX10II (20081) 1000 TD	Scattered disk object	3.300 ± 0.038	1.034 ± 0.033	Water ice	8, fi 8, c
(29981) 1999 ID_{10} (21824) Eletus	Scattered disk object	8.098 ± 0.038	1.230 ± 0.028 1.672 ± 0.071	Water ice	o, g 9 10 26 a
(31624) Elatus (32532) Thereus	Centaur	10.439 ± 0.107 0.365 ± 0.038	1.072 ± 0.071 1 100 ± 0.032	Water ice	0, 10, 20, g
(32929) 1995 OV	Plutino	7.305 ± 0.038 7.489 ± 0.126	1.190 ± 0.052 1.160 ± 0.150	water ice	1 13
(32)22) 1995 Q 19 (33001) 1997 CU ₂₀	Cold classical	6173 ± 0.078	1.100 ± 0.100 1.804 ± 0.115		7 16 22 27
(33128) 1998 BU ₄₈	Scattered disk object	6.889 ± 0.127	1.607 ± 0.089 1.692 ± 0.089		8 10
(33340) 1998 VG ₄₄	Plutino	6.292 ± 0.077	1.511 ± 0.055		8, 14, 16, 24
(35671) 1998 SN ₁₆₅	Scattered disk object	5.431 ± 0.068	1.123 ± 0.082		7, 10, 16
(38083) Rhadamanthus	Scattered disk object	7.432 ± 0.063	1.177 ± 0.109		18
(38084) 1999 HB ₁₂	Resonant (5:2)	6.718 ± 0.050	1.409 ± 0.049		16, 25, 27, 28
(38628) Huya	Plutino	4.674 ± 0.099	1.539 ± 0.062	Featureless	29, 7, 16, 18, g
(40314) 1999 KR ₁₆	Scattered disk object	5.527 ± 0.039	1.872 ± 0.068		7, 18, 27
(42301) 2001 UR ₁₆₃	Resonant (9:4)	3.812 ± 0.109	2.190 ± 0.130	Featureless	15, 30, 31, g
(42355) Typhon	Scattered disk object	7.358 ± 0.076	1.292 ± 0.071	Water ice	25, 28, h
(44594) 1999 OX ₃	Scattered disk object	6.835 ± 0.078	1.839 ± 0.087	Water ice	8, 9, 10, 15, 21, 30, i
(47171) 1999 TC ₃₆	Plutino	4.851 ± 0.054	1.740 ± 0.049	Water ice	10, 16, 25, 32, h
(47932) 2000 GN ₁₇₁	Plutino	5.666 ± 0.090	1.559 ± 0.066	Featureless	18, 24, h
(48639) 1995 TL ₈	Detached KBO	4.667 ± 0.091	1.693 ± 0.217		8, 10, 21
(49036) Pelion	Centaur	10.157 ± 0.112	1.248 ± 0.096	N. 4	9, 18
(50000) Quaoar	Hot classical	2.220 ± 0.029	1.588 ± 0.021	Methane	25, 33, h
(52/47) 1998 HM ₁₅₁	Cold classical	$/.41/\pm 0.100$	1.550 ± 0.103	W 7	19
(528/2) Okyrnoe (52075) Cullerus	Centaur	10.775 ± 0.078	1.237 ± 0.086	water ice	10, 16, 32, g
(52311) Devealion	Cold classical	6.034 ± 0.101	1.003 ± 0.102 2.030 ± 0.160		0, 10, 14, 23 27
(54598) Rienor	Centaur	7.002 ± 0.000 7.727 + 0.077	2.050 ± 0.100 1 158 ± 0.075	Methanol	∠/ 8 10 15 b
(55565) 2002 AW10-	Hot classical	3.156 ± 0.077	1.130 ± 0.073 1.498 ± 0.044	Featureless	24 33 34 h
(55576) Amycus	Centaur	7.789 ± 0.039	1.814 + 0.044	Water ic	24, 28, 33, 34 i
(55636) 2002 TX ₂₀₀	Hot classical	3.296 ± 0.047	1.010 ± 0.028	Water ice	25. 30. a
(55637) 2002 UX ₂₅	Scattered disk object	3.486 ± 0.084	1.502 ± 0.052	Water ice	24. 31. g
(55638) 2002 VE ₉₅	Plutino	5.143 ± 0.062	1.790 ± 0.040	Methanol	24, g
(58534) Logos	Cold classical	6.759 ± 0.181	1.653 ± 0.150		7, 22
(59358) 1999 CL ₁₅₈	Scattered disk object	6.653 ± 0.090	1.190 ± 0.072		8

Table 3. continued.

Object	Dynamical class	$H_{R}(\alpha)$	B-R	Spectral features	References
(60454) 2000 CH ₁₀₅	Cold classical	6.363 ± 0.077	1.699 ± 0.083	÷	28
(60458) 2000 CM ₁₁₄	Scattered disk object	6.954 ± 0.044	1.240 ± 0.040		25
(60558) Echeclus	Centaur	9.669 ± 0.090	1.376 ± 0.072		18.24
(60608) 2000 EE ₁₇₃	Scattered disk object	8.028 ± 0.107	1.164 ± 0.032		18, 25
(60620) 2000 FD ₈	Resonant (7:4)	6.344 ± 0.061	1.806 ± 0.113		18, 28
(60621) 2000 FE ₂	Resonant (5:2)	6510 ± 0.062	1230 ± 0.027		8 25
(63252) 2001 BL	Centaur	11273 ± 0.065	1.290 ± 0.027 1.199 ± 0.045		25 28
(65252) 2001 BE_{41} (65489) Ceto	Scattered disk object	6.205 ± 0.000	1.177 ± 0.019 1.420 ± 0.040	Waterice	25, 20 25, g
(66452) 1999 OF	Cold classical	6.205 ± 0.000 6.255 ± 0.090	1.420 ± 0.040 1.830 ± 0.095	water ice	23, g 28
(66652) Borasisi	Cold classical	5.233 ± 0.050 5.420 ± 0.051	1.030 ± 0.099 1.610 ± 0.050		16.35
(60086) 1008 WW.	Plutino	7.964 ± 0.001	1.010 ± 0.050 1.235 ± 0.152		8 28
(60088) 1008 WA	$P_{\text{asonant}}(5:2)$	$7.90 + \pm 0.090$ 7.303 ± 0.140	1.233 ± 0.132 1.412 ± 0.127		20
(60000) 1008 WH.	Plutino	7.303 ± 0.149 7.088 ± 0.200	1.412 ± 0.127 1.225 ± 0.086		28
(73480) 2002 PN	Scattered disk object	7.900 ± 0.200 8 487 ± 0.046	1.223 ± 0.030 1.280 ± 0.020	Waterice	25
$(73480) 2002 11N_{34}$ (70360) 1007 CS		5.467 ± 0.040	1.260 ± 0.020 1.746 ± 0.077	Fasturalass	43, J
(79300) 1997 CS ₂₉ (70078) 1000 CC	Pasapant (12:5)	5.008 ± 0.085 5.400 ± 0.001	1.740 ± 0.077 1.566 ± 0.100	reatureless	0, 7, 14, 22, K 9, 10, 24
(79976) 1999 CC ₁₅₈ (70082) 1000 DE	Let alassisal	5.409 ± 0.091	1.300 ± 0.100 1.620 ± 0.078		0, 10, 24
(79985) 1999 DF ₉	Cold alogaical	5.797 ± 0.110	1.030 ± 0.078 1.080 ± 0.220		0 27
$(80800) 2000 \text{CM}_{105}$	Cold classical	0.502 ± 0.050	1.980 ± 0.230 1.417 + 0.077		21 25 28 20 21
$(82073) 2000 \text{ I W}_{134}$	Resoliant (8.5)	4.429 ± 0.004	1.417 ± 0.077 1.418 ± 0.020		21, 23, 28, 30, 31
(82153) 2001 FZ ₁₇₃	Scattered disk object	5.811 ± 0.027	1.418 ± 0.050 1.402 ± 0.055		25, 28
$(82138) 2001 \text{ FP}_{185}$	Scattered disk object	3.940 ± 0.033	1.402 ± 0.033	M - 4h 1	23, 30
(83982) Crantor	Centaur	8.093 ± 0.037	1.804 ± 0.044	Wetenier	25, 28, 55, 54, fi 21, 24, 21, -
$(84522) 2002 \text{ IC}_{302}$	Scattered or detached KBO	5.082 ± 0.007	1.741 ± 0.048	water ice	21, 24, 51, g
$(84719) 2002 VR_{128}$	Plutino Distin	5.005 ± 0.040	1.540 ± 0.040 1.520 ± 0.020	W/	24
$(84922) 2003 VS_2$	Plutino	3.794 ± 0.070	1.520 ± 0.030	water ice	24, g
(85633) 1998 KR ₆₅	Cold classical	6.599 ± 0.073	1.727 ± 0.144		18, 19
(86047) 1999 OY ₃	Scattered disk object	6.293 ± 0.055	1.055 ± 0.050		8, 9, 18
(86177) 1999 RY ₂₁₅	Scattered disk object	$6./36 \pm 0.114$	1.151 ± 0.183		16, 18
$(8/269) 2000 OO_{67}$	Scattered disk object	$9.05/\pm0.1/0$	1.702 ± 0.092		21, 25
(8/555) 2000 QB ₂₄₃	Scattered disk object	8.439 ± 0.119	1.088 ± 0.094		15, 28
(88269) 2001 KF ₇₇	Centaur	10.038 ± 0.020	1.810 ± 0.040	N. 4	25
(90377) Sedna	Detached KBO	1.120 ± 0.088	$1.8/4 \pm 0.115$	Methane	21, 24, 36, 1
(90482) Orcus	Scattered disk object	1.991 ± 0.054	1.042 ± 0.037	Methane	24, 36, m
(90568) 2004 GV ₉	Hot classical	3.786 ± 0.080	$1.4/0 \pm 0.040$	Featureless	24, h
(91133) 1998 HK ₁₅₁	Plutino	6.937 ± 0.076	1.240 ± 0.064		8, 16
(91205) 1998 US ₄₃	Plutino	7.852 ± 0.050	1.185 ± 0.102		28
(91554) 1999 RZ ₂₁₅	Scattered disk object	$8.0/2 \pm 0.0/9$	1.346 ± 0.132		18
$(95626) 2002 \text{ GZ}_{32}$	Centaur	6.603 ± 0.131	1.199 ± 0.075		25, 30, 33
(118228) 1996 TQ ₆₆	Plutino	7.245 ± 0.195	1.881 ± 0.144		6, 7
(1183/8) 1999 HT ₁₁	Resonant (/:4)	6.906 ± 0.040	1.830 ± 0.100		27
(1183/9) 1999 HC ₁₂	Scattered disk object	7.611 ± 0.170	1.384 ± 0.214		18
$(118/02)$ 2000 OM_{67}	Scattered or detached KBO	1.075 ± 0.036	1.290 ± 0.040		21
(119068) 2001 KC ₇₇	Resonant (5:2)	6.822 ± 0.030	$1.4/0 \pm 0.010$		25
(119070) 2001 KP ₇₇	Resonant (7:4)	$6.8/3 \pm 0.305$	1.720 ± 0.319		28, 30
(119315) 2001 SQ ₇₃	Centaur	$8.85 / \pm 0.069$	1.130 ± 0.020		25, 31
$(119473) 2001 UO_{18}$	Plutino	$/.804 \pm 0.506$	2.079 ± 0.376		30
(119878) 2002 CY ₂₂₄	Resonant (12:5)	$5.8/1 \pm 0.056$	1.680 ± 0.100	D . 1	31
$(119951) 2002 \text{ KX}_{14}$	Scattered disk object	4.349 ± 0.124	1.660 ± 0.040	Featureless	24, 37, h
(120061) 2003 CO ₁	Centaur	9.134 ± 0.140	1.240 ± 0.040		25, 27
(120132) 2003 FY ₁₂₈	Scattered disk object	4.486 ± 0.053	1.650 ± 0.020	Water ice	21,g
$(120181) 2003 UR_{292}$	Scattered disk object	7.093 ± 0.100	1.690 ± 0.080		24
(120216) 2004 EW ₉₅	Plutino	6.309 ± 0.050	1.080 ± 0.030		24
(121725) 1999 XX ₁₄₃	Centaur	8.586 ± 0.096	1.734 ± 0.145		8, 28
(126619) 2002 CX ₁₅₄	Scattered or detached KBO	1.178 ± 0.075	1.470 ± 0.128		31
(127546) 2002 XU ₉₃	Scattered disk object	7.942 ± 0.019	1.200 ± 0.020		21
(129772) 1999 HR ₁₁	Resonant (7:4)	$1.1/2 \pm 0.150$	1.450 ± 0.156		16
(130391) 2000 JG ₈₁	Resonant (2:1)	7.748 ± 0.056	1.417 ± 0.060		This work
(134860) 2000 OJ ₆₇	Cold classical	6.001 ± 0.120	1.720 ± 0.078		8
(135182) 2001 QT ₃₂₂	Scattered disk object	7.752 ± 0.320	1.240 ± 0.060		37
(136108) Haumea	Resonant(12:7)	0.205 ± 0.011	0.973 ± 0.024	Water ice	38, 39, n
(136120) 2003 LG ₇	Resonant (3:1)	8.322 ± 0.049	1.271 ± 0.091		This work

Table 3. continued.

Object	Dynamical class	$H_{p}(\alpha)$	R - R	Spectral features	References
(136199) Fris	Scattered or detached KRO	-1511 + 0.033	1207 ± 0.088	Methane	24 36 0
(136204) 2003 WI ~	Centaur	8.670 ± 0.000	1.230 ± 0.000	mentalle	21, 50, 0
(136472) Makemake	Hot classical	-0.317 ± 0.070	1.230 ± 0.040 1.332 ± 0.020	Methane	36 n
(137294) 1999 REar	Cold classical	6.091 + 0.073	1.700 ± 0.029	methane	18
(137295) 1999 RE ₂₁₅	Resonant (2.1)	7.668 ± 0.095	1.00 ± 0.140 1.419 ± 0.142		18
$(138537) 2000 \text{ OK}_{216}$	Cold classical	6.003 ± 0.093	1.417 ± 0.142 1.540 ± 0.094		8
$(138357) 2000 OK_{67}$ $(144897) 2004 UX_{12}$	Hot classical	4.216 ± 0.087	1.540 ± 0.094 1.530 ± 0.020	Methanol	37 i
$(144897) 2004 0X_{10}$ (145480) 2005 TB	Detached KBO	4.210 ± 0.087 3.040 ± 0.085	1.530 ± 0.020 1.540 ± 0.030	Wiethanoi	21
$(143480) 2003 \text{ IB}_{190}$ (148200) 2000 CP	Detached KBO	5.949 ± 0.063	1.340 ± 0.030 1.272 ± 0.068		21
$(148209) 2000 CK_{105}$	Lat alassisal	0.191 ± 0.073	1.275 ± 0.008 1.640 ± 0.170		21, 23
(140760) Altjira (140560) 2002 OZ	Fot classical	3.883 ± 0.320	1.040 ± 0.170 1.205 ± 0.048		50 This work
$(149300) 2003 QZ_{91}$	Scattered disk object	6.302 ± 0.026 5.705 ± 0.061	1.303 ± 0.040		
$(108/03) 2000 \text{ GP}_{183}$ (181708) 1002 EW	Scattered disk object	5.795 ± 0.001	1.100 ± 0.057		ð 1 17 10 22
(181708) 1993 FW (181855) 1008 W/T		0.372 ± 0.103	1.023 ± 0.110 1.247 ± 0.140		1, 17, 19, 22
(181855) 1998 w I_{31}	Hot classical	7.443 ± 0.079	1.247 ± 0.140		28, 40
(181807) 1999 CV ₁₁₈	Resonant (7:5)?	7.007 ± 0.103	2.130 ± 0.090		27
(181808) 1999 CG_{119}	Scattered disk object	7.004 ± 0.040	1.530 ± 0.080		27
(181871) 1999 CO_{153}	Cold classical	6.607 ± 0.030	1.940 ± 0.090		21 27
(181874) 1999 HW ₁₁	Scattered or detached KBO	6.706 ± 0.062	1.323 ± 0.043		21, 27
$(182397) 2001 \text{ QW}_{297}$	Resonant (9:4)	6.660 ± 0.064	1.600 ± 0.070		21
$(182934) 2002 GJ_{32}$	Hot classical	5.469 ± 0.187	$1.6/8 \pm 0.261$		30, 31
1993 RO	Plutino	8.492 ± 0.113	1.385 ± 0.154		1,9
1994 EV ₃	Cold classical	7.110 ± 0.072	1.732 ± 0.167		1, 18, 27
1994 TA	Centaur	11.421 ± 0.126	1.930 ± 0.155		9, 7
1995 HM ₅	Plutino	7.849 ± 0.109	1.010 ± 0.192		6, 22
1995 WY ₂	Cold classical	6.864 ± 0.110	1.655 ± 0.278		1, 7
1996 RQ ₂₀	Hot classical	6.903 ± 0.092	1.523 ± 0.156		7, 10
1996 RR ₂₀	Plutino	6.622 ± 0.143	1.868 ± 0.130		7, 9, 18
1996 TK ₆₆	Cold classical	6.190 ± 0.116	1.666 ± 0.088		7, 8, 9
1996 TS ₆₆	Hot classical	5.947 ± 0.130	1.665 ± 0.157		6, 7, 12
1997 CV ₂₉	Hot classical	7.154 ± 0.030	1.860 ± 0.022		19
1997 QH ₄	Hot classical	6.996 ± 0.136	1.731 ± 0.168		7, 9, 10, 18
1997 RT ₅	Hot classical	7.117 ± 0.140	1.549 ± 0.162		18
1997 SZ ₁₀	Resonant (2:1)	8.100 ± 0.104	1.790 ± 0.085		9
1998 FS ₁₄₄	Hot classical	6.717 ± 0.105	1.516 ± 0.057		19, 22
1998 HL ₁₅₁	Hot classical	8.120 ± 0.149	1.190 ± 0.284		27, 40
1998 KG ₆₂	Cold classical	6.125 ± 0.110	1.602 ± 0.158		16, 18
1998 KS ₆₅	Cold classical	7.166 ± 0.040	1.730 ± 0.045		19
1998 UR ₄₃	Plutino	8.083 ± 0.132	1.390 ± 0.113		10
1998 WS ₃₁	Plutino	7.952 ± 0.186	1.315 ± 0.075		28
1998 W V ₂₄	Cold classical	7.126 ± 0.067	$1.2/0 \pm 0.032$		9
1998 W V ₃₁	Plutino	7.627 ± 0.069	1.349 ± 0.096		10, 28
1998 WX ₂₄	Cold classical	6.241 ± 0.099	1.790 ± 0.071		9
1998 WZ ₃₁	Plutino	8.044 ± 0.102	1.263 ± 0.089		28
1998 X Y ₉₅	Scattered or detached KBO	6.438 ± 0.143	1.580 ± 0.212		14
1999 CB ₁₁₉	Hot classical	6.740 ± 0.050	1.926 ± 0.095		28
1999 CD ₁₅₈	Resonant (7:4)	4.837 ± 0.111	1.384 ± 0.116		8, 10, 40
1999 CF ₁₁₉	Scattered or detached KBO	6.982 ± 0.084	1.424 ± 0.072		27, 25
1999 CJ ₁₁₉	Cold classical	6.695 ± 0.210	$2.0'/0 \pm 0.220$		27
1999 CM ₁₁₉	Cold classical	7.356 ± 0.060	1.780 ± 0.170		27
1999 CQ ₁₃₃	Hot classical	6.682 ± 0.050	1.350 ± 0.070		27
1999 CX ₁₃₁	Resonant (5:3)	6.914 ± 0.087	$1.63/\pm 0.118$		28
1999 GS ₄₆	Hot classical	6.230 ± 0.020	1.760 ± 0.070		27
1999 HS ₁₁	Cold classical	6.344 ± 0.081	1.845 ± 0.099		16, 19, 28, 35
1999 HV ₁₁	Cold classical	7.003 ± 0.050	1.700 ± 0.063		19
1999 JD ₁₃₂	Hot classical	5.983 ± 0.020	1.590 ± 0.090		27
1999 OE_4	Cold classical	6.887 ± 0.193	1.832 ± 0.147		28
1999 OJ ₄	Cold classical	6.899 ± 0.060	1.675 ± 0.077		28
1999 OM ₄	Cold classical	7.521 ± 0.100	1.739 ± 0.170		18
1999 KJ ₂₁₅	Scattered disk object	7.881 ± 0.103	1.221 ± 0.175		18
1999 RX ₂₁₄	Cold classical	6.385 ± 0.050	1.647 ± 0.070		28
1999 RY ₂₁₄	Hot classical	$/.006 \pm 0.040$	1.258 ± 0.085		28
1999 TR ₁₁	Plutino	8.063 ± 0.140	1.770 ± 0.106		9
2000 AF ₂₅₅	Scattered disk object	5.682 ± 0.030	1.780 ± 0.060		27
2000 CG ₁₀₅	Hot classical	6.469 ± 0.293	1.170 ± 0.170		27, 40
2000 CJ_{105}	Hot classical	5.687 ± 0.066	1.760 ± 0.106		31
2000 CL ₁₀₄	Cold classical	6.394 ± 0.086	1.851 ± 0.192		18
2000 CL ₁₀₅	Cold classical	6.761 ± 0.060	1.520 ± 0.090		27

Table 3. continued.

Object	Dynamical class	$H_{P}(\alpha)$	B-R	Spectral features	References
2000 CN ₁₀₅	Cold classical	5.286 ± 0.160	1.720 ± 0.128	~	31
2000 CO ₁₀₅	Hot classical	5.619 ± 0.124	1.520 ± 0.180		27
2000 CQ ₁₀₅	Scattered disk object	5.996 ± 0.054	1.107 ± 0.043		25, 28
2000 FS ₅₃	Cold classical	7.165 ± 0.124	1.786 ± 0.095		19, 27
2000 FZ ₅₃	Centaur	11.103 ± 0.165	1.170 ± 0.050		25
2000 KK4	Hot classical	5.982 ± 0.103	1.550 ± 0.050		19
2000 PE ₃₀	Scattered disk object	5.867 ± 0.110	1.132 ± 0.084		15, 16, 21
2000 YB_2	Scattered disk object	6.436 ± 0.084	1.500 ± 0.134		31
2001 FM ₁₉₄	Scattered disk object	7.453 ± 0.159	1.190 ± 0.040		25
2001 HY ₆₅	Hot classical	6.041 ± 0.064	1.510 ± 0.092		31
2001 HZ ₅₈	Cold classical	6.158 ± 0.053	1.640 ± 0.085		31
2001 KA ₇₇	Hot classical	5.050 ± 0.089	1.812 ± 0.122		8, 28, 30
2001 KB ₇₇	Plutino	7.349 ± 0.078	1.390 ± 0.130		24
2001 KD ₇₇	Plutino	5.928 ± 0.096	1.763 ± 0.060		8, 28
2001 KG ₇₇	Scattered disk object	8.340 ± 0.120	1.240 ± 0.070		25
2001 K 1 ₇₆		0.089 ± 0.380	1.900 ± 0.291		30 21
$2001 QC_{298}$	Hot classical	0.381 ± 0.174	1.030 ± 0.098 1.640 ± 0.158		31
2001 QD_{298}	Plutino	0.183 ± 0.170 5 110 ± 0.118	1.040 ± 0.138 1.051 ± 0.085		15 24 30
2001 QF ₂₉₈	Neptune Troian	5.119 ± 0.118 7 828 ± 0.010	1.051 ± 0.085 1.260 ± 0.036		15, 24, 50
2001 QK_{322}	Scattered disk object	6.144 ± 0.146	1.200 ± 0.000 1.752 ± 0.280		25 31
2001 QX_{322} 2001 OY_{207}	Cold classical	5.151 ± 0.231	1.752 ± 0.200 1.561 ± 0.177		15 30 35
2001 Q1297	Cold classical	6.241 ± 0.123	1.590 ± 0.191		31
2001 XZ_{255}	Centaur	10.800 ± 0.080	1.910 ± 0.070		25
2002 DH ₅	Centaur	10.115 ± 0.100	1.054 ± 0.075		28
2002 GB ₃₂	Scattered disk object	7.638 ± 0.019	1.390 ± 0.020		21
2002 GF ₃₂	Plutino	5.973 ± 0.210	1.765 ± 0.134		30
2002 GH ₃₂	Hot classical	6.098 ± 0.201	1.509 ± 0.160		30, 31
2002 GP ₃₂	Resonant (5:2)	6.580 ± 0.162	1.386 ± 0.162		30, 35
2002 GV ₃₂	Plutino	6.886 ± 0.199	1.860 ± 0.122		30
2002 MS ₄	Resonant (18:11)	3.333 ± 0.040	1.070 ± 0.040		24
2002 VT ₁₃₀	Cold classical	5.426 ± 0.092	2.010 ± 0.233		31
2002 XV ₉₃	Plutino	4.434 ± 0.040	1.090 ± 0.030		24
2003 AZ ₈₄	Plutino	3.537 ± 0.053	1.052 ± 0.057	Methanol	24, 31, 33, h
2003 FZ ₁₂₉	Scattered or detached KBO	6.983 ± 0.038	1.320 ± 0.040		21
2003 HB ₅₇	Scattered or detached KBO	7.389 ± 0.028	1.310 ± 0.030		21
$2003 QA_{92}$	Scattered disk object	0.307 ± 0.240	1.070 ± 0.020 1.270 ± 0.040		37
$2003 QK_{91}$	Scattered of delached KDO	0.900 ± 0.030 7.624 ± 0.280	1.370 ± 0.040 1.180 ± 0.050		21
2003 QQ91	Hot classical	7.024 ± 0.280 4.730 ± 0.057	1.180 ± 0.000 1.780 ± 0.092		31
2003 QW 90 2003 TH-0	Plutino	4.730 ± 0.057 6.940 ± 0.056	0.990 ± 0.092		40
2003 UZ117	Hot classical	4.920 ± 0.083	0.990 ± 0.071 0.990 ± 0.050	Water ice	24. a
2003 YL 170	Cold classical	7.482 ± 0.300	1.260 ± 0.090		37
2004 OJ ₁₄	Scattered or detached KBO	6.991 ± 0.028	1.420 ± 0.030		21
2004 UP ₁₀	Neptune Trojan	8.651 ± 0.030	1.160 ± 0.064		41
2004 XR ₁₉₀	Detached KBO	3.937 ± 0.036	1.240 ± 0.040		21
2005 CB ₇₉	Hot classical	4.375 ± 0.028	1.090 ± 0.028	Water ice	40, q
2005 EO ₂₉₇	Resonant (3:1)	7.221 ± 0.047	1.320 ± 0.050		21
2005 GE ₁₈₇	Plutino	7.192 ± 0.097	1.740 ± 0.112		40
2005 PU ₂₁	Scattered disk object	6.091 ± 0.019	1.790 ± 0.020		21
2005 SD ₂₇₈	Scattered or detached KBO	5.915 ± 0.019	1.530 ± 0.020		21
2005 TN ₅₃	Neptune Trojan	9.027 ± 0.040	1.290 ± 0.106		41
2005 TO ₇₄	Neptune Trojan	8.426 ± 0.030	1.340 ± 0.078		41
2006 RJ_{103}	Neptune Irojan	7.400 ± 0.023	1.903 ± 0.044		This work
2006 SQ372	Scattered disk object	1.109 ± 0.049	$1./12 \pm 0.093$		21, 1 nis work
2007 JJ ₄₃	not classical	4.044 ± 0.019	1.010 ± 0.020 1.400 ± 0.027		21 This work
2007 JK43 2007 NC	Scattered disk object	1.028 ± 0.017	$1.400 \pm 0.02/$ 1.282 ± 0.029		This work
2007 NC7	Centour	0.000 ± 0.018 8 /35 ± 0.030	1.202 ± 0.028 1.237 ± 0.060		This work
2007 Km_{283}	Scattered disk object	6.186 ± 0.039	1.237 ± 0.009 1 390 + 0.040		21 21
2007 UM	Centaur	10.161 ± 0.042	1.080 ± 0.040	Water ice	This work i
2007 VJ205	Scattered disk object	6.713 ± 0.028	1.440 ± 0.030		21
2008 FC ₇₆	Centaur	9.181 ± 0.039	1.756 ± 0.024	Methanol	This work. i
2008 KV42	Scattered disk object	8.564 ± 0.056	1.290 ± 0.060		21
2008 OG ₁₉	Scattered or detached KBO	4.612 ± 0.013	1.470 ± 0.010		21

References. see Appendix A.

Appendix A: Compiled database

For each object, we computed the average color index from the different papers presenting data obtained simultaneously in B and *R* bands (e.g. contiguous observations within a same night). When individual R apparent magnitude and date were available, we computed the $H_R(\alpha) = R - 5 \log(r \cdot \Delta)$, where R is the *R*-band magnitude, *r* and Δ are the helio- and geocentric distances at the time of observation in AU, respectively. When Vand V - R colors were available, we derived an R and then $H_R(\alpha)$ value. We did not correct for the phase-angle α effect as we needed only to make a general estimation of the absolute magnitude for our complete sample. In addition, few objects have phase correction coefficients available in the literature, and no universally accepted canonical values per dynamical class can be strictly adopted. Table 3 presents the resulting values. This table includes also spectral information on the presence of water ice, methanol, methane, or confirmed featureless spectra, as available in the literature. We highlight only the cases with clear bands in the spectrum, which were reported/confirmed by some other work.

There is no strict definition of the dynamical classes of Centaurs and KBOs. Roughly speaking, objects orbiting in mean motion resonances with Neptune are called "resonants" (if located in the 1:1 resonance they are also known as Neptune Trojans and as Plutinos if located in the 3:2 resonance); Centaurs are the objects with orbits between those of Jupiter and Neptune; scattered disk objects (SDOs), are those within the probable gravitational influence of Neptune; detached KBOs, are those beyond past or future gravitational influence by Neptune; classical KBOs, are those with rather circular orbits beyond Neptune and below the 2:1 resonance region (being called hot if their orbital inclination is higher than 5° or cold if lower).

To determine the dynamical class, we first gathered the orbital elements, with epoch 2011–12–05, from "The Asteroid Orbital Elements Database", astorb.dat¹, maintained by the "Lowell Observatory" based on astrometric observations by the "Minor Planet Center". Then, using the particular classification scheme suggested by Lykawka & Mukai (2007), including their analysis of objects located in the mean motion resonances (MMR) with Neptune, dynamical class was determined following a 11 step algorithm:

- 1. $q < a_J \Rightarrow$ Not analyzed;
- 2. in 1:1 MMR with Neptune \Rightarrow Neptune Trojan;
- 3. in 3:2 MMR with Neptune \Rightarrow Plutino;
- 4. in other MMR with Neptune \Rightarrow other resonant;
- 5. $q > a_{\rm J} \land a < a_{\rm N} \Rightarrow$ Centaur;
- 6. $a_{\rm J} < q < a_{\rm N} \land a \ge a_{\rm N} \Rightarrow$ scattered disk object (SDO);

- 7. $a_{\rm N} < q \leq 37 \,\text{AU} \Rightarrow$ scattered disk object (SDO);
- 8. $q \ge 40 \text{ AU} \land a \ge 48 \text{ AU} \Rightarrow \text{detached KBO (DKBO)};$
- 9. $37 \text{ AU} \leq q \leq 40 \text{ AU} \Rightarrow$ scattered or detached KBO (SDKBO);
- 10. $i < 5^{\circ} \land \{[q \ge 37 \text{ AU} \land (37 \text{ AU} \le a \le 40 \text{ AU})] \lor [q \ge 38 \text{ AU} \land (42 \text{ AU} \le a \le 48 \text{ AU})]\} \Rightarrow \text{cold classical KBO}$ (cCKBO);
- 11. $i \ge 5^{\circ} \land q \ge 37 \text{ AU} \land (37 \text{ AU} \le a \le 48 \text{ AU}) \Rightarrow \text{hot classical KBO (hCKBO).}$

where q and a are the object's perihelion and semi-major axis, respectively. Jupiter semi-major axis is a_J , and Neptune's is a_N . We note that throughout the algorithm an object can be reclassified.

We are aware that there are more complex classification schemes, which may be more refined, but the boundaries between families do not change significantly. We chose this one for its computational simplicity.

References for the colors presented in Table 3 are: (1) Luu & Jewitt (1996); (2) Lazzaro et al. (1997); (3) Romon-Martin et al. (2003); (4) Romanishin et al. (1997); (5) Romon-Martin et al. (2002); (6) Tegler & Romanishin (1998); (7) Jewitt & Luu (2001); (8) Doressoundiram et al. (2002); (9) Tegler & Romanishin (2000); (10) Delsanti et al. (2001); (11) Tegler & Romanishin (1997); (12) Jewitt & Luu (1998); (13) Barucci et al. (1999); (14) Boehnhardt et al. (2001); (15) Doressoundiram et al. (2007); (16) Doressoundiram et al. (2001); (17) Green et al. (1997); (18) Boehnhardt et al. (2002); (19) Tegler & Romanishin (2003); (20) Hainaut et al. (2000); (21) Sheppard (2010); (22) Barucci et al. (2000); (23) Rabinowitz et al. (2008); (24) Tegler et al.²; (25) Tegler et al. (2003); (26) Peixinho et al. (2001); (27) Trujillo & Brown (2002); (28) Peixinho et al. (2004); (29) Ferrin et al. (2001); (30) Doressoundiram et al. (2005b); (31) Santos-Sanz et al. (2009); (32) Dotto et al. (2003); (33) Fornasier et al. (2004); (34) Doressoundiram et al. (2005a); (35) Gulbis et al. (2006); (36) Rabinowitz et al. (2007); (37) Romanishin et al. (2010); (38) Rabinowitz et al. (2006); (39) Lacerda et al. (2008); (40) Snodgrass et al. (2010); (41) Sheppard & Trujillo (2006).

References for the spectral features indicated in Table 3 are: (a) Romon-Martin et al. (2003); (b) Cruikshank et al. (1998); (c) Kern et al. (2000); (d) Guilbert et al. (2009b); (e) Jewitt & Luu (2001); (f) Brown et al. (1999); (g) Barkume et al. (2008); (h) Guilbert et al. (2009a); (i) Barucci et al. (2011); (j) DeMeo et al. (2010); (k) Grundy et al. (2005); (l) Barucci et al. (2010); (m) Delsanti et al. (2010); (n) Pinilla-Alonso et al. (2009); (o) Merlin et al. (2009); (p) Brown et al. (2007a); (q) Schaller & Brown (2008).

¹ ftp://ftp.lowell.edu/pub/elgb/astorb.dat.gz

² http://www.physics.nau.edu/~tegler/research/survey. htm